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Recall from last time that we can think of I(2), the Lie group of Eu-
clidean isometries over R2, as the space of configurations for ourselves
as pedestrians on the Euclidean plane. Equivalently, we can think of
it as the orthonormal frame bundle over R2, with each ϕ ∈ I(2) iden-
tified with the orthonormal frame ϕ∗ : T0R2 ≈ R2 → Tϕ(0)R2 given by
the pushforward of ϕ at 0 and with bundle map given by the natural
quotient map q

O(2)
: I(2) → R2 ∼= I(2)/O(2), ϕ 7→ ϕ(0). On I(2),

we have the Maurer-Cartan form ω
I(2)

, which gives a kind of canonical

(co)framing to I(2) that agrees with how we typically describe motion,
letting us speak about “forward velocity” without having to specify our
current configuration. We learned how to move inside of a Lie group,
and now it is time to use this knowledge to do some geometry.

The goal of this lecture is to practice thinking in terms of the Maurer-
Cartan form, and in particular, to start demonstrating why we can
think of geometry as “Lie theory with extra steps”. Along the way, we
will happen to accomplish the following as well:

• Rephrase some basic aspects of Euclidean geometry in terms of
I(2)

• Notice the interpretation of the adjoint representation coming
from our intuition for conjugation

• Prove basic results in Euclidean geometry using isometries
• Think about how the structure of I(2) determines Euclidean
geometry

By the end of this lecture, we should be able to talk about how the
geometric structure of the Euclidean plane comes from the Lie group
I(2) acting transitively on it. In the next lecture, we will begin to
explore geometries determined by other Lie groups, along the same
vein. We should note that, while elements of this lecture show up
later, the important take-away from this is that the pair (I(2),O(2))
determines Euclidean geometry; if you already know this with some
detail, then it can be safely skipped.
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1. “Isn’t geometry about circles and lines and stuff?”

In the previous lecture, we used lines and other notions of Euclidean
geometry to determine the form of the isometry group I(2). Now,
we would like to try going the other way; starting from I(2), we will
describe Euclidean geometry.

As we mentioned at the end of the first lecture, when we “walk in
a straight line”, this really just corresponds to moving with constant
translational velocity—which is to say, translational velocity that is
constant with respect to the Maurer-Cartan form. Thus, a line will
just be the full path of such motion projected onto the plane.

Figure 1. A line is the projection to the plane of a
curve with ω

I(2)
-constant translational velocity and zero

angular velocity

Definition 1.1. A line on the Euclidean plane I(2)/O(2) ∼= R2 is a
subset of the form q

O(2)
(g exp(Rv)) for some g ∈ I(2) and some nonzero

v ∈ R2 < i(2).

Choosing to use right-translations to define lines might seem odd to
the uninitiated. Indeed, if you are not already familiar with Cartan
geometries, then it probably seems easier to define lines as orbits of
one-parameter subgroups of translations acting from the left on the
Euclidean plane. Unfortunately, in this case, the reason for using right-
translations is somewhat obscured by the fact that the subgroup of
translations is normal1 in I(2). By the end of the next lecture, the
reason for this choice will be obvious, but for now, we will just say that
we always want to be able to move along lines (and, later, geodesics
and other distinguished curves).

1Recall that N ≤ G is normal in G if and only if gN = Ng for all g ∈ G. In
other words, when N is normal, every motion Rn with n ∈ N has a corresponding
transformation Ln′ for some n′ ∈ N that behaves the same way at a given g ∈ G.
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Note that, for every x ∈ R2, we have τx ∈ q−1
O(2)

(x). Thus, if x + Rv
is a line in the usual sense on R2, then we can write it in terms of the
definition above as q

O(2)
(τx+Rv) = q

O(2)
(τx exp(Rv)).

While lines themselves are defined in terms of motion along them,
we will define parallelism in terms of transformations. We start with
two lines, and in order to see whether they are parallel, we shift one of
those lines onto the other via a translation.

Definition 1.2. Two lines ℓ and ℓ′ in the Euclidean plane are parallel
if and only if there is some u ∈ R2 such that τu(ℓ) = ℓ′.

Figure 2. Two lines in the Euclidean plane are parallel
when one is a translation of the other

Later, we will show that this definition is equivalent to the classical
definition of parallel lines in terms of intersection.

Given two vectors in the same tangent space, we can measure the
angle between them in terms of the rotation needed to move from one
to the other.

Figure 3. We can define angles between vectors in
terms of the rotations needed to move between them
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Definition 1.3. Let g ∈ I(2) be such that q
O(2)∗((ωI(2)

)−1
g (e1)) is a

positive scalar multiple of v ∈ TxR2. For w ∈ TxR2, the (oriented) angleSmall
correction:
In order to
uniquely de-
termine the
direction of
the angle here,
we pick both a
starting vector
and, implicitly,
an orientation.
Thus, these
should really
be called
oriented angles,
since they are
not preserved
by orientation-
reversing
isometries.
We can get un-
oriented angles
by forgetting
the direction,
though this
only deter-
mines an ele-
ment of R/2πZ
up to sign, so
we lose mean-
ingful angle-
addition.

from v to w is the unique θ ∈ R/2πZ such that q
O(2)∗((ωI(2)

)−1
grot(θ)(e1))

is a positive scalar multiple of w.

Note that this defines angles modulo 2π. If we want to talk about
angles larger than 2π, or if we want to distinguish angles that are the
same modulo 2π, then we would need to work with the universal cover
R of SO(2) ≃ R/2πZ.

An interesting feature of the geometry of the Euclidean plane is that,
fixing an orientation by restricting ourselves to the identity component
I◦(2) ≃ R2 ⋊ SO(2) of I(2), we have a natural way to add angles at
different points. Because R2 is normal in I◦(2), we get a natural homo-
morphic quotient map

πR2 : I◦(2) → R2\ I◦(2) ≃ SO(2)

given by τu ◦ A 7→ A. Under the map πR2 , we can identify angles at
different points on the plane and add them together.

An alternative way to describe angles comes from the adjoint repre-
sentation Ad : I(2) → GL(i(2)). Conveniently, we already have some
idea of what conjugation looks like, so since Adg is, by definition, just
the pushforward at the identity of conjugation by g, we can get a fairly
good picture of what the adjoint representation looks like as well.

For example, conjugating g by rot(θ) gives the transformation that
behaves like the motion g at the orthonormal frame corresponding to
rot(θ). Thus, rot(θ)◦τtv ◦rot(θ)−1 is just the transformation coinciding
with the motion τtv at rot(θ), namely τtrot(θ)·v, so Adrot(θ) just rotates
velocities by θ. The angle between two vectors v, w ∈ TxR2 can then
equivalently be described as the element θ ∈ R/2πZ ≃ SO(2) such that,
for v a positive scalar multiple of q

O(2)∗((ωI(2)
)−1
g (e1)), w is a positive

scalar multiple of q
O(2)∗((ωI(2)

)−1
g (Adrot(θ)(e1))).

Note that, in the first definition of angle above, we had v be a pos-
itive scalar multiple of q

O(2)
((ω

I(2)
)−1
g (e1)) and w be a positive scalar

multiple of q
O(2)∗((ωI(2)

)−1
grot(θ)(e1)). Examining this second expression

more closely, we have

q
O(2)∗((ωI(2)

)−1
grot(θ)(e1)) = q

O(2)∗(Lgrot(θ)∗(e1)) = q
O(2)∗(Lg∗ Lrot(θ)∗(e1))

= q
O(2)∗(Rrot(θ)−1∗(Lg∗ Lrot(θ)∗(e1)))

= q
O(2)∗(Lg∗(Lrot(θ)∗Rrot(θ)−1∗)(e1))

= q
O(2)∗(Lg∗Adrot(θ)(e1))

= q
O(2)∗((ωI(2)

)−1
g (Adrot(θ)(e1))),

where the equality in the second line follows from q
O(2)

◦ Rrot(θ) = q
O(2)

and the equality in the third line is a consequence of left-translation
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and right-translation commuting with each other. This verifies that
the two definitions of angle are equivalent.

Finally, we get to circles. We won’t use them much in the Euclidean
geometry planned for this lecture, but it’s still worth giving them a
definition in terms of I(2), to prove that we can.

Definition 1.4. For x ∈ R2 and v ∈ R2, the circle centered at x with
radius (the length of) v is the set

Cv(x) :=
{
q
O(2)

(gτv) : g ∈ q−1
O(2)

(x)
}
.

In other words, Cv(x) is the set of all points that some orthonormal
frame over x thinks are v away from x. Equivalently, if you stand over
x and specify a radius v from your frame, and then you spin around
“in a circle” until you get back to your original configuration, then you
will have traced out a circle.

Figure 4. Tracing out a circle as in the above definition

2. Two elementary results from Euclidean geometry

To demonstrate how “actual” Euclidean geometry can be done in
terms of isometries, we shall prove two elementary results.

Proposition 2.1. Suppose two lines ℓ and ℓ′ intersect at a point x,
determining four angles around x as in Figure 5. The angles opposite
each other are congruent, so that θ1 = θ3 and θ2 = θ4.

Using I(2), this is fairly straightforward: imagine you are occupying
a frame g over x such that you are pointed along a vector tangent to ℓ
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Figure 5. Two lines ℓ and ℓ′ intersecting at x

Figure 6. Turning on the spot by rot(π) = −1 keeps
you on the same line but points you in the opposite di-
rection

used to form the angle θ1. By definition, if we rotate ourselves by θ1,
which is to say we right-translate by rot(θ1), then we will be pointing
along ℓ′. Now, imagine we are at g ◦ rot(π) = g ◦ (−1). We are still
pointed along ℓ, but now in the opposite direction, along a vector we
can use to form the angle θ3. But because SO(2) is abelian, if we
move by rot(θ1) from g ◦ (−1), then we’ll be at the orthonormal frame
g ◦ (−1) ◦ rot(θ1) = (g ◦ rot(θ1)) ◦ (−1), which points us along ℓ′ again
in the opposite direction as g ◦ rot(θ1). In other words, rotating by θ1
did the same thing as rotating by θ3, so they are equal.
Equivalently, we could just say that θ1 and θ3 are congruent under

the isometry τx ◦ (−1) ◦ τ−1
x , essentially by the same reason: −1 sends

each line through 0 to itself.
Let us try another.

Proposition 2.2. Suppose ℓ1 and ℓ′1 are distinct parallel lines, and ℓ2
is a line intersecting both ℓ1 and ℓ′1, forming the angles θ1 and θ2 as in
Figure 7. Then, θ1 and θ2 are congruent.
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Figure 7. Parallel lines ℓ1 and ℓ′1 intersected by a
transversal ℓ2

Again, this is not too difficult in terms of I(2): because ℓ1 and ℓ′1 are
parallel, there is some u ∈ R2 such that τu(ℓ1) = ℓ′1, and because the
subgroup of translations is normal, there is some nonzero v ∈ R2 such
that τv(ℓ

′
1) = ℓ′1. For x the point where ℓ1 and ℓ2 intersect and y the

point where ℓ′1 and ℓ2 intersect, there is some t ∈ R such that

τu(x) = u+ x = tv + y = τtv(y),

hence y − x = u − tv, so τy−x = τ−tv ◦ τu. Since τu sends ℓ1 to ℓ′1
and τ−tv preserves ℓ′1, this means τy−x sends ℓ1 to ℓ′1. Moreover, since
x, y ∈ ℓ2, τy−x preserves ℓ2, so τy−x sends θ1 to the angle opposite θ2
in the intersection of ℓ′1 and ℓ2, hence they are congruent by the first
proposition.

3. How does Euclidean geometry show up, algebraically?

Now that we have seen how to reformulate Euclidean geometry in
terms of I(2), we are led to a natural question: why I(2)? What about
this particular Lie group gives us Euclidean geometry?

Throughout, we have relied heavily on the subgroup R2 < I(2) of
translations. In particular, as we saw in Proposition 2.2, we explicitly
used the fact that R2 is normal in I(2) to use transformations instead
of motions. Implicitly, we also used the fact that R2 < I(2) acts simply
transitively on I(2)/O(2) ∼= R2, when we used the points x and y
to determine the transformation τy−x. Translations were also used to
describe parallelism, giving a definition that, as we now show, happens
to coincide with the standard formulation in terms of intersections.

Proposition 3.1. Two distinct lines ℓ and ℓ′ in the Euclidean plane
are parallel if and only if ℓ ∩ ℓ′ = ∅.
Proof. To start, choose x, y, v, w ∈ R2 such that ℓ = q

O(2)
(τx+Rv) and

ℓ′ = q
O(2)

(τy+Rw). If ℓ ∩ ℓ′ = ∅, then x ̸= y and there are no t, s ∈ R



8 JACOB W. ERICKSON

such that

q
O(2)

(τx+tv) = x+ tv = y + sw = q
O(2)

(τy+sw).

In particular, y − x is never in the span of v and w, so because R2

is 2-dimensional, this means that v and w are scalar multiples of each
other and

τy−x(ℓ) = τy−x(qO(2)
(τx+Rv)) = q

O(2)
(τy+Rv) = q

O(2)
(τy+Rw) = ℓ′.

Figure 8. If ℓ ∩ ℓ′ = ∅, then for x ∈ ℓ and y ∈ ℓ′, we
have τy−x(ℓ) = ℓ′

Conversely, if there exists u ∈ R2 such that τu(ℓ) = ℓ′, then

τu(qO(2)
(τx+Rv)) = q

O(2)
(τu+x+Rv) = q

O(2)
(τy+Rw),

so for every t ∈ R, there is an s ∈ R such that u+ x+ tv = y + sw. In
particular, u+x−y+ tv is in the span of w for every t ∈ R, so u+x−y
and (u + x − y + v) − (u + x − y) = v are in the span of w. Thus, if
ℓ∩ ℓ′ ̸= ∅, then there would be t, s ∈ R such that x+ tw = u+ x+ sw,
which would mean that u is in the span of w, which would mean ℓ and
ℓ′ were not distinct. □

Note that the proof of this equivalence explicitly depended on our
ability to use R2 as a vector space. Moreover, it once again implicitly
used the identification between R2 as the homogeneous space I(2)/O(2)
and R2 as the subgroup of translations. For example, we took the
points x and y of the homogeneous space and used them to create the
translation τy−x from their difference, and we showed that v was in the
span of w using (u+ x− y + v)− (u+ x− y) = v.
Indeed, the key feature that allows for parallelism to look the way

that it does in Euclidean geometry is this simply transitive normal
subgroup of translations. To see this, suppose we have another Lie
group G acting transitively on the plane R2, and that G contains a
closed normal subgroup isomorphic to R2 that acts simply transitively
on R2. Again, we can decompose elements g ∈ G as g = τg(0)(τ

−1
g(0)g),
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with τ−1
g(0)g acting linearly on R2 by conjugation (since conjugation must

give an automorphism of R2 and the group of automorphisms of R2 is
precisely GL2R).

We can then define lines the same way we did above, in terms of
translations. Our definition of parallelism in terms of translations still
makes sense as well, and by repeating the proof of the above proposi-
tion, we see that it is consistent with the usual definition in terms of
intersection.

Circles and angles are a bit trickier to find in the structure of I(2). Of
course, we can (correctly) guess that it ultimately comes from the sub-
group O(2) < I(2), but how is still a bit mysterious, since we used trans-
lations to describe both concepts. The key is to notice that we didn’t
actually need the translations for these definitions. For example, when
defining circles, we used v ∈ R2 to describe the radius of Cv(x) because
that was more familiar, but really, every isometry a ∈ τv O(2) = q−1

O(2)
(v)

determines the same circle:

Cv(x) =
{
q
O(2)

(gτv) : g ∈ q−1
O(2)

(x)
}
=

{
q
O(2)

(ga) : g ∈ q−1
O(2)

(x)
}
.

Thus, the angles and circles of Euclidean geometry come from the sta-
bilizer subgroup O(2) of 0 ∈ R2 ∼= I(2)/O(2). In particular, if we were
to replace I(2) with a Lie group G containing a closed subgroup iso-
morphic to O(2), then we could use the definitions from above to talk
about “circles” and “angles” in this other “geometry”.

In the next lecture, we will clarify what we mean here by “geometry”,
and explore some famous examples.


